Funder	Project Title	Funding	Strategic Plan Objective	Institution
Brain & Behavior Research Foundation	Autism Linked LRRTM4-Heparan Sulphate Proteoglycan Complex Functions in Synapse Development	\$0	2.1	University of Manitoba
Brain & Behavior Research Foundation	Modeling Pitt-Hopkins Syndrome, an Autism Spectrum Disorder, in Transgenic Mice Harboring a Pathogenic Dominant Negative Mutation in TCF4	\$0	2.1	University of North Carolina at Chapel Hill
Department of Defense - Army	DISRUPTION OF TROPHIC INHIBITORY SIGNALING IN AUTISM SPECTRUM DISORDERS	\$0	2.1	Northwestern University
Autism Speaks	Dissecting the 16p11.2 CNV endophenotype in induced pluripotent stem cells	\$0	2.1	University of California, San Francisco
Autism Speaks	Identification and validation of genetic variants which cause the Autism Macrocephaly subphenotype	\$0	2.1	University of California, Los Angeles
Autism Science Foundation	Calcium Channels as a Core Mechanism in the Neurobiology of ASD	\$0	2.1	Massachusetts General Hospital
Autism Science Foundation	Genetics Behind Brain Connectivity in ASD	\$0	2.1	University of Texas Southwestern Medical Center
Autism Science Foundation	Brain Somatic Mosaicism at ASD-Associated Loci	\$0	2.1	University of Michigan
Department of Defense - Army	The role of the new mTOR complex, mTORC2, in autism spectrum disorders	\$0	2.1	Baylor College of Medicine
Brain & Behavior Research Foundation	Corticogenesis and Autism Spectrum Disorders: New Hypotheses on Transcriptional Regulation of Embryonic Neurogenesis by FGFs from In Vivo Studies and RNA-sequencing Analysis of Mouse Brain	\$0	2.1	Yale University
Department of Defense - Army	Neural Correlates of the Y Chromosome in Autism: XYY Syndrome as a Genetic Model	\$0	2.1	Children's Hospital of Philadelphia
Department of Defense - Army	Neural Correlates of the Y Chromosome in Autism: XYY Syndrome as a Genetic Model	\$0	2.1	Nemours Children's Health System, Jacksonville
Simons Foundation	Electrophysiological consequences of SCN2A mutations found in ASD	\$0	2.1	University of California, San Francisco
Simons Foundation	Role of LIN28/let-7 axis in autism	\$0	2.1	Johns Hopkins University School of Medicine
Simons Foundation	Role of GABA interneurons in a genetic model of autism	\$0	2.1	Yale University
Simons Foundation	CNTNAP2 regulates production, migration and organization of cortical neurons	\$0	2.1	Memorial Sloan-Kettering Cancer Center
Simons Foundation	Exploring the Intersection of Autism and Homeostatic Synaptic Plasticity	\$0	2.1	University of California, San Francisco
Simons Foundation	Impact of Pten mutations: brain growth trajectory and scaling of cell types	\$0	2.1	Scripps Research Institute
Simons Foundation	BAZ1B Haploinsufficiency and the Neuro- phenotypes of Williams Syndrome	\$0	2.1	University of California, Santa Barbara

Funder	Project Title	Funding	Strategic Plan Objective	Institution
Simons Foundation	Rescuing synaptic and circuit deficits in an Angelman syndrome mouse model	\$0	2.1	University of Arizona
Simons Foundation	Role of Caspr2 (CNTNAP2) in brain circuits- Core	\$0	2.1	Weizmann Institute of Science
Simons Foundation	Translational control by RBFox1: investigating its mechanisms and functions	\$0	2.1	Trinity College Dublin, The University of Dublin
Simons Foundation	Role of Caspr2 (CNTNAP2) in brain circuits - Project 1	\$0	2.1	King's College London
Simons Foundation	Explore the pathogenic role of mTor signaling in chr16p11.2 microdeletion	\$0	2.1	Children's Hospital Los Angeles
Simons Foundation	SCN2A mouse	\$0	2.1	Duke University Medical Center
Simons Foundation	Modeling multiple heterozygous genetic lesions in autism using Drosophila melanogaster	\$0	2.1	University of California, Los Angeles
Simons Foundation	PsychoGenics Inc.	\$0	2.1	PsychoGenics Inc.
Simons Foundation	Mouse Model of Dup15q Syndrome	\$0	2.1	Texas AgriLife Research
National Institutes of Health	mTOR modulation of myelination	\$1	2.1	Vanderbilt University
Brain & Behavior Research Foundation	Interrogating Synaptic Transmission in Human Neurons	\$17,500	2.1	Stanford University
Brain & Behavior Research Foundation	a-Actinin Regulates Postsynaptic AMPAR Targeting by Anchoring PSD-95	\$19,748	2.1	University of Tuebingen
Autism Research Institute	Unique Mitochondrial Dysfunction in Autism Spectrum Disorder	\$20,000	2.1	University of Arkansas
Brain & Behavior Research Foundation	A Novel GABA Signalling Pathway in the CNS	\$25,000	2.1	McLean Hospital
Brain & Behavior Research Foundation	Molecular Dimorphism in the Locus Coeruleus May Mediate Sex-specific Differences in Psychiatric Disease Risk	\$25,000	2.CC	Washington University in St. Louis
Autism Science Foundation	Genetic mutations in chromosome 16 and their role in autism	\$25,000	2.1	University of Texas Southwestern Medical Center
Autism Science Foundation	Study of a potentially novel biomarker for features of ASD	\$25,000	2.1	Johns Hopkins University
National Institutes of Health	The Role of Fragile X-related protein 1 in adult neurogenesis	\$27,023	2.2	University of Wisconsin-Madison
National Institutes of Health	FMRP and Pumilio co-regulate synaptogenesis by controlling Neuroglian expression	\$27,936	2.1	Vanderbilt University
Autism Speaks	Monitoring Treatment-Induced Neuroanatomical Changes in a Mouse Model of Rett Syndrome	\$30,000	2.1	The Hospital for Sick Children

Funder	Project Title	Funding	Strategic Plan Objective	Institution
Autism Speaks	Investigating Shank3 function during synaptogenesis in mice to define a therapeutic window for ASD.	\$30,000	2.1	Duke University
Autism Speaks	Elucidating synapse-specific defects underlying autism	\$30,400	2.1	University of Utah
National Institutes of Health	Determination of the Epigenetic Regulation of Gene Transcription by MECP2 in Neurons	\$30,741	2.1	University of Kentucky
National Institutes of Health	A Novel Essential Gene for Human Cognitive Function	\$31,881	2.1	Harvard Medical School
Brain & Behavior Research Foundation	Modeling Microglial Involvement in Autism Spectrum Disorders, with Human Neuro-glial Co-cultures	\$35,000	2.1	Whitehead Institute for Biomedical Research
Brain & Behavior Research Foundation	Signaling Pathways that Regulate Excitatory-inhibitory Balance	\$35,000	2.1	University of California, San Diego
Brain & Behavior Research Foundation	Cellular Mechanisms Controlling White Matter Connectivity: Making Sense of a Genetic Risk Factor for Autism and Schizophrenia	\$35,000	2.1	Columbia University
Brain & Behavior Research Foundation	In vivo Imaging of Prefrontal Cortical Activity During Social Interactions in Normal and Autism Mice	\$35,000	2.1	Duke University
Brain & Behavior Research Foundation	The Study of Homeostatic Downscaling in Psychiatric Disorders	\$35,000	2.1	University of Illinois at Urbana-Champaign
National Institutes of Health	Endoplasmic Reticulum Stress as a Novel Mechanism of Synaptic Dysfunction in Autism-Associated NLGN3 R451C Human Neurons	\$37,840	2.1	Rutgers Robert Wood Johnson Medical School
National Institutes of Health	Characterizing the CHD8 Complex to Determine its Role in Autism Spectrum Disorder	\$43,576	2.1	Stanford University
National Institutes of Health	Understanding the Role of EPAC2 in Cognitive Function	\$48,576	2.1	Northwestern University
Brain & Behavior Research Foundation	Rebuilding Inhibition in the Autistic Brain	\$49,680	2.1	Brandeis University
Simons Foundation	MAGEL2, a candidate gene for autism and Prader-Willi syndrome	\$53,753	2.1	University of Alberta
National Institutes of Health	Role of the intracellular signal integrator CC2D1A in the developing nervous system	\$56,118	2.1	George Washington University
Simons Foundation	In vivo approach to screen ASD allele functions in cortical interneurons	\$62,500	2.1	University of California, San Francisco
Simons Foundation	How do autism-related mutations affect basal ganglia function?	\$62,500	2.1	University of California, Berkeley
Simons Foundation	Analysis of oxytocin function in brain circuits processing social cues	\$62,500	2.1	Harvard University

Funder	Project Title	Funding	Strategic Plan Objective	Institution
Simons Foundation	The Role of Cation/Proton Exchanger NHE9 in Autism	\$62,500	2.1	University of California, San Francisco
Brain & Behavior Research Foundation	Mechanisms of eIF4E-dependent Translational Control in Autism	\$66,667	2.1	McGill University
Simons Foundation	Restoring GABA inhibition in a Rett syndrome mouse model by tuning a kinase-regulated CI- rheostat	\$66,839	2.1	Yale University
Simons Foundation	Neurobiological basis of connectivity deficits in autism	\$67,436	2.1	Fondazione Istituto Italiano di Tecnologia
Simons Foundation	Defining the Translational Landscape in Mouse Models of Autism - Core	\$68,750	2.1	University of Massachusetts Medical School
Simons Foundation	Defining the Translational Landscape in Mouse Models of Autism - Project 1	\$68,750	2.1	University of Texas Southwestern Medical Center
Simons Foundation	Analysis of Shank3 ubiquitination regulation by RNF31 phosphorylation	\$70,000	2.1	Medical University of South Carolina
Simons Foundation	Genetic rescue of a mouse model of Fragile X by targeted deletion of RICTOR	\$70,000	2.1	Albert Einsteign College of Medicine
Simons Foundation	Foxp1 orchestration of neuronal function in the striatum	\$73,345	2.1	University of Texas Southwestern Medical Center
National Institutes of Health	Signaling Pathways in Autism	\$74,611	2.1	University of Nebraska Medical Center
Simons Foundation	Functional and behavioral analysis of zebrafish ASD models	\$74,975	2.1	University of Queensland
Brain & Behavior Research Foundation	The Interplay Between Human Astrocytes and Neurons in Psychiatric Disorders	\$75,000	2.1	University of California, San Diego
Simons Foundation	Do VIP interneurons drive abnormal prefrontal circuit function in autism?	\$75,000	2.1	University of California, San Francisco
Simons Foundation	Does Astrocyte Dysfunction Contribute to Synaptic Pathologies in Autism?	\$75,000	2.1	Duke University Medical Center
Simons Foundation	Development of corticothalamic circuits of prefrontal cortex in mouse models of autism	\$75,000	2.1	Boston Children's Hospital
Simons Foundation	Exploring Sex Differences in ASD via the NRXN1 KO Rat	\$75,000	2.CC	University of Maryland, College Park
Simons Foundation	Assessing thalamocortical circuit function in TSC1 and NHE6 mouse models	\$75,000	2.1	Brown University
National Institutes of Health	BDNF regulation of the cortical neuron transcriptome	\$77,000	2.1	University of Colorado Denver
Simons Foundation	The Medical College of Wisconsin, Inc.	\$79,243	2.1	The Medical College of Wisconsin, Inc.
Simons Foundation	Autophagy pathway alterations in lymphocytes: Potential biomarkers for autism?	\$79,551	2.1	Columbia University

Funder	Project Title	Funding	Strategic Plan Objective	Institution
National Institutes of Health	Alternative splicing-mediated mechanisms of cortical interneuron maturation and circuit integration	\$96,751	2.1	New York University School of Medicine
Simons Foundation	Identification of shared transcriptional profiles with three high-confidence autism mouse models	\$100,000	2.1	University of North Carolina at Chapel Hill
National Institutes of Health	Project 4: Calcium Signaling Defects in Autism (Pessah/Lein)	\$115,417	2.1	University of California, Davis
National Institutes of Health	Tet-mediated Epigenetic Modulation in Autism	\$117,000	2.1	Emory University
Autism Speaks	CYFIP function/s in brain: insights into Autism Spectrum Disorders	\$117,500	2.1	Vlaams Instituut voor Biotechnologie
Simons Foundation	Interneuron subtype-specific malfunction in autism spectrum disorders	\$120,000	2.1	New York University School of Medicine
National Institutes of Health	Role of Autism Susceptibility Gene, TAOK2 kinase, and its novel substrates in Synaptogenesis	\$121,022	2.1	University of California, San Francisco
Simons Foundation	Neuronal translation in Tsc2+/- and Fmr1-/y mutant ASD mouse models	\$124,999	2.1	Columbia University
Simons Foundation	Mechanisms that Connect Autism with Homeostatic Synaptic Plasticity	\$125,000	2.1	University of California, San Francisco
Simons Foundation	Role of the hippocampal CA2 region in autism	\$125,000	2.1	Columbia University Medical Center
Simons Foundation	Canonical Computations in Autism	\$137,070	2.1	Baylor College of Medicine
National Institutes of Health	Endocannabinoids in social and repetitive behavioral domains	\$143,746	2.1	Vanderbilt University
National Institutes of Health	Functional Analysis of Rare Variants in Genes Associated with Autism	\$147,905	2.1	Yale University
National Institutes of Health	Tools for manipulating local protein synthesis in the brain	\$148,500	2.1	University of Toronto
Simons Foundation	Neurobiology of Rai1, a critical gene for syndromic ASDs	\$175,000	2.1	Stanford University
National Institutes of Health	Rescuing Motor Deficits In SHANK3 Releated Disorders	\$178,190	2.1	Baylor College Of Medicine
National Institutes of Health	mTOR modulation of myelination	\$179,658	2.1	Vanderbilt University Medical Center
National Institutes of Health	Mechanisms underlying the Cerebellar Contribution to Autism in Mouse Models of Tuberous Sclerosis Complex	\$190,458	2.1	University of Texas Southwestern Medical Center
National Institutes of Health	Coordinate actions between methyl-CpG binding proteins in neuronal development	\$191,250	2.1	University of Wisconsin-Madison
National Institutes of Health	Chloride homeostasis and GABA maturation in fragile X syndrome	\$193,125	2.1	Northwestern University

Funder	Project Title	Funding	Strategic Plan Objective	Institution
National Institutes of Health	The Nature of Astrocyte Heterogeneity in RTT	\$196,974	2.1	Baylor College Of Medicine
National Institutes of Health	Deficits in KCC2 activity and the pathophysiology of Autism spectrum disorders	\$206,250	2.1	Tufts University Boston
Autism Speaks	Temporal divergence of hypoconnectivity and excitotoxicity in Rett syndrome	\$215,784	2.1	Vanderbilt University
Simons Foundation	Role of a novel PRCI complex in neurodevelopment and ASD neurobiology	\$225,000	2.1	New York University School of Medicine
National Institutes of Health	A mouse model for AUTS2-linked neurodevelopmental disorders	\$228,838	2.1	University of Illinois at Urbana-Champaign
National Institutes of Health	Decoding the RGS14 Interactome/Signalosome in CA2 hippocampal neurons	\$234,000	2.1	Emory University
National Institutes of Health	BPA, Cortical Development and Gene Expression: Implications for Autism	\$236,192	2.1	University of Illinois at Urbana-Champaign
National Institutes of Health	Identification of human-relevant CLOCK molecular signaling pathways	\$242,625	2.2	University of Texas Southwestern Medical Center
National Institutes of Health	Protein Interaction Network Analysis to Test the Synaptic Hypothesis of Autism	\$244,566	2.1	Seattle Children's Hospital
National Institutes of Health	Molecular mechanisms of electrical synapse formation in vivo	\$249,000	2.1	University of Oregon
National Institutes of Health	Foxp2 regulation of sex specific transcriptional pathways and brain development	\$249,000	2.CC	Virginia Polytechnic Institute and State University
National Institutes of Health	Astrocytes contribution to tuberous sclerosis pathology	\$249,750	2.1	Yale University
Simons Foundation	Cellular models for autism de novo mutations using human stem cells	\$250,000	2.Core/Other	Broad Institute, Inc.
Simons Foundation	Chromatin remodeling in autism	\$250,000	2.1	Stanford University
Simons Foundation	Translational dysregulation in autism pathogenesis and therapy	\$250,000	2.1	Massachusetts General Hospital
Simons Foundation	The role of PTCHD1 in thalamic reticular nucleus function and ASD	\$250,000	2.1	Massachusetts Institute of Technology
Simons Foundation	Molecular consequences of strong effect ASD mutations including 16p11.2	\$250,000	2.1	Massachusetts General Hospital
National Institutes of Health	Sex-specific regulation of social play	\$250,400	2.CC	Boston College
National Institutes of Health	Stem cell- based studies of gene- environment interactions in PTEN- associated autism	\$260,250	2.1	University of California, Los Angeles
National Institutes of Health	Functional Genomics of Human Brain Development	\$266,096	2.1	Yale University

Funder	Project Title	Funding	Strategic Plan Objective	Institution
National Institutes of Health	Scalable technologies for genome engineering in hIPSCs	\$306,948	2.1	University of California, San Diego
National Institutes of Health	Role of UBE3A in the Central Nervous System	\$321,269	2.1	University of North Carolina at Chapel Hill
National Institutes of Health	Spastic paraplegia, neurodegeneration and autism: possible role for AT-1/SLC33A1?	\$330,978	2.1	University of Wisconsin-Madison
National Institutes of Health	Molecular Pathogenesis Studies of Rett Syndrome	\$346,719	2.1	Baylor College of Medicine
National Institutes of Health	Role of Brg1 in Activity-Induced Neuronal Gene Expression and Synaptic Plasticity	\$365,696	2.1	University of Texas Southwestern Medical Center
National Institutes of Health	Functional analysis of Neuroligin-Neurexin interactions in synaptic transmission	\$366,406	2.1	University of Massachusetts Medical School
National Institutes of Health	Experience-dependent plasticity of synaptic structureResubmission-1	\$370,781	2.1	New York University School of Medicine
National Institutes of Health	Translational Regulation of Adult Neural Stem Cells	\$372,646	2.1	University of Wisconsin-Madison
National Institutes of Health	Translation, Synchrony, and Cognition	\$379,689	2.1	New York University
National Institutes of Health	Molecular mechanisms of the synaptic organizer alpha-neurexin	\$379,844	2.1	University of Texas Medical Branch at Galveston
National Institutes of Health	The Role of BK Channels in Neuropathology of Fragile X Syndrome	\$380,000	2.1	Washington University in St. Louis
National Institutes of Health	Development and afferent regulation of auditory neurons	\$380,000	2.1	Florida State University
National Institutes of Health	Akt-mTOR Pathway Impact on Neural Stem Cell Fates	\$380,133	2.1	Richard Stockton College of New Jersey
National Institutes of Health	Neurobiological Mechanism of 15q11-13 Duplication Autism Spectrum Disorder	\$380,625	2.1	Beth Israel Deaconess Medical Center
National Institutes of Health	Genetic and Developmental Analyses of Fragile X Mental Retardation Protein	\$383,322	2.1	Vanderbilt University
National Institutes of Health	Phenotyping Astrocytes in Human Neurodevelopmental Disorders	\$386,463	2.1	Stanford University
National Institutes of Health	Role of MEF2 and neural activity in cortical synaptic weakening and elimination	\$394,331	2.1	University of Texas Southwestern Medical Center
National Institutes of Health	Optogenetic treatment of social behavior in autism	\$395,996	2.1	University of California, Los Angeles
National Institutes of Health	New Models For Astrocyte Function in Genetic Mouse Models of Autism Spectrum Diso	\$396,250	2.1	Cleveland Clinic
National Institutes of Health	Investigating the Mechanism of Optic Nerve Hypoplasia Associated with CASK Mutation	\$396,400	2.2	Virginia Polytechnic Institute and State University
National Institutes of Health	Shank3 in Synaptic Function and Autism	\$401,250	2.1	Massachusetts Institute of Technology

Funder	Project Title	Funding	Strategic Plan Objective	Institution
National Institutes of Health	The role of Foxp1-regulated signaling pathways in brain development and behavior	\$405,000	2.1	University of Texas Southwestern Medical Center
National Institutes of Health	The Impact of Pten Signaling on Neuronal Form and Function	\$405,000	2.1	Dartmouth College
National Institutes of Health	Autism-linked endosomal mechanisms in neuronal arborization and connectivity	\$406,250	2.1	Brown University
National Institutes of Health	Mechanisms of circuit failure and treatments in patient-derived neurons in autism	\$406,250	2.1	Brown University
National Institutes of Health	Biology of Non-Coding RNAs Associated with Psychiatric Disorders	\$416,850	2.1	University of Southern California
National Institutes of Health	Adult Neurogenesis and Executive Function	\$417,500	2.1	Albert Einsteign College of Medicine
National Institutes of Health	Monoallelic expression in neurons derived from induced pluripotent stem cells	\$417,500	2.1	Albert Einsteign College of Medicine
National Institutes of Health	High content assays for cellular and synaptic phenotypes	\$421,623	2.Core/Other	University of California, San Diego
National Institutes of Health	Neuronal Adaptation and Plasticity after Chronic Disuse	\$423,750	2.1	New York University School of Medicine
National Institutes of Health	Analysis of Shank3 Complete and Temporal and Spatial Specific Knockout Mice	\$425,202	2.1	Duke University
National Institutes of Health	Heparan sulfate in neurophysiology and neurological disorders	\$425,746	2.1	Sanford Burnham Prebys Medical Discovery Institute
National Institutes of Health	Neurodevelopmental Phenotypes in MLL mutant mice	\$435,379	2.1	Icahn School of Medicine At Mount Sinai
National Institutes of Health	SLC7A5-MTOR Regulation of Neural Development	\$442,241	2.1	Clemson University
National Institutes of Health	Reproducible protocols for robust cortical neuron and astroglial differentiation	\$453,211	2.Core/Other	University of California, San Diego
National Institutes of Health	Regulation of mTOR signaling in the developing cerebral cortex as a point of convergence for multiple autism risk factors	\$480,000	2.1	Scripps Research Institute - Florida
National Institutes of Health	Dissecting neural mechanisms integrating multiple inputs in C. elegans	\$485,000	2.1	Salk Institute for Biological Studies
National Institutes of Health	Gaining insight into psychiatric disease by engineering piece by piece the human brain in vitro.	\$489,075	2.1	Stanford University
National Institutes of Health	Regulation of Mammalian Social Behavior by the Gtf2i Family of Proteins	\$501,347	2.1	Washington University in St. Louis
National Institutes of Health	Synaptic pathophysiology of the 16p11.2 microdeletion mouse model	\$531,026	2.2	Massachusetts Institute of Technology
National Institutes of Health	Dissecting recurrent microdeletion syndromes using dual-guide genome editing	\$580,798	2.1	Massachusetts General Hospital

Funder	Project Title	Funding	Strategic Plan Objective	Institution
National Institutes of Health	Proteogenetics of Autism Spectrum Disorders	\$583,992	2.1	Scripps Research Institute
Department of Defense - Army	Forward Genetic Screen to Identify Novel Therapeutic Entry Points of an Autism Spectrum Disorder	\$587,878	2.1	Baylor College of Medicine
National Institutes of Health	Mechanotransduction C. elegans	\$588,908	2.1	Massachusetts General Hospital
National Institutes of Health	Function and Structure Adaptations in Forebrain Development	\$590,225	2.1	Children's Hospital Los Angeles
National Institutes of Health	Dynamic regulation of Shank3 and ASD	\$602,491	2.1	Johns Hopkins University
National Institutes of Health	Tet-mediated Epigenetic Modulation in Autism	\$603,129	2.1	Emory University
National Institutes of Health	Neuronal Activity-Dependent Regulation of MeCP2	\$606,287	2.1	Harvard Medical School
National Institutes of Health	Neurobiology of Autism With Macrocephaly	\$614,548	2.1	Yale University
National Institutes of Health	Impact of SynGAP1 Mutations on Synapse Maturation and Cognitive Development	\$614,568	2.1	Scripps Research Institute - Florida
National Institutes of Health	Induced neuronal cells: A novel tool to study neuropsychiatric diseases	\$615,259	2.1	Stanford University
National Institutes of Health	Neurotrophic Factor Regulation of Gene Expression	\$622,854	2.1	Harvard Medical School
National Institutes of Health	Engrailed genes and cerebellum morphology, spatial gene expression and circuitry	\$639,375	2.1	Memorial Sloan-Kettering Cancer Center
National Institutes of Health	MRI Biomarkers of Patients with Tuberous Sclerosis Complex and Autism	\$728,507	2.1	Boston Children's Hospital
National Institutes of Health	Single-cell approaches to deconvolution of disease-associated signals	\$736,293	2.Core/Other	University of California, San Diego
National Institutes of Health	The Elongation Hypothesis of Autism	\$760,000	2.1	University of North Carolina at Chapel Hill
National Institutes of Health	A Family-Genetic Study of Autism and Fragile X Syndrome	\$868,531	2.1	Northwestern University
National Institutes of Health	Regulation of Neuroligins and Effects on Synapse Number and Function	\$1,133,599	2.1	National Institutes of Health
National Institutes of Health	Functional Genomics of Human Brain Development	\$1,621,706	2.1	Yale University
National Institutes of Health	Dysregulation of Protein Synthesis in Fragile X Syndrome and Other Developmental Disorders	\$1,626,666	2.2	National Institutes of Health